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Consistent Lagrangian description of variable-tension lightlike p-branes (LL-branes) is presented in two
equivalent forms – a Polyakov-type formulation and a dual to it Nambu–Goto-type formulation. An
important and non-standard characteristic feature of the LL-branes is that the brane tension appears as
a non-trivial additional dynamical degree of freedom. We consider properties of p = 2 LL-brane dynamics
(as a test brane) in D = 4 Kerr or Kerr–Newman gravitational backgrounds in some detail. It is shown
that the LL-brane automatically positions itself on the horizon and rotates along with the same angular
velocity.
Finally, we construct explicitly a traversable wormhole of Misner–Wheeler type based on a Reissner–
Nordström geometry. This wormhole is constructed as a self-consistent solution of the electrically
sourceless Einstein–Maxwell system in the D = 4 bulk interacting with a LL-brane. The pertinent
wormhole throat is located precisely at the LL-brane sitting on the outer Reissner–Nordström horizon
with the Reissner–Nordström mass and charge being functions of the dynamical LL-brane tension.

© 2009 Published by Elsevier B.V.
1. Introduction

Lightlike branes (LL-branes, for short) attract special interest in
general relativity. This is due primarily because of their role in
the effective description of many cosmological and astrophysical
effects: (a) impulsive lightlike signals arising in cataclysmic astro-
physical events [1]; (b) the “membrane paradigm” theory of black
hole physics [2]; (c) thin-wall approach to domain walls coupled
to gravity [3,4]. More recently LL-branes acquired significance also
in the context of modern non-perturbative string theory [5].

Our formalism makes an essential use of an alternative non-
Riemannian measure of integration (volume-form). The latter leads
to different type of gravitational theories [6] which address vari-
ous basic problems of cosmological interest. In the context of the
theory of extended objects employing an alternative integration
measure independent of the intrinsic Riemannian metric on the
world-volume within the Polyakov-type approach leads to a dy-
namical string/brane tension [7]. Furthermore it allows the con-
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struction of consistent Lagrangian actions describing intrinsically
lightlike p-branes (LL-branes) [8]. Also an equivalent Nambu–Goto-
type formulation of LL-brane dynamics has been shown to exist
(third Ref. [9], cf. Eq. (17) below) which is dual to the Polyakov-
type formulation (cf. Eq. (1) below).

The above mentioned basic properties of LL-branes (intrinsically
lightlike brane modes and variable dynamical tension) are in sharp
contrast w.r.t. those of ordinary Nambu–Goto branes, which de-
scribe massive modes and where the brane tension is given as an
ad hoc constant.

In a series of papers [8,9] we have studied the properties
of LL-branes both as test branes moving in physically interesting
gravitational backgrounds, as well as material and charge sources
for gravity and electromagnetism in self-consistent bulk gravity–
matter systems interacting with LL-branes.

In gravitational backgrounds of spherically symmetric type and
codimension-one a general feature of LL-branes is that their dy-
namics is consistent only provided the background possesses an
event horizon which is automatically occupied by the LL-brane.
Also, the dynamical brane tension exhibits an exponential “infla-
tion/deflation” property analogous to the “mass inflation effect”
around black hole horizons discovered in [10]. Furthermore, un-
like conventional braneworlds, where the underlying branes are of
Nambu–Goto type and in their ground state they position them-
selves at some fixed point in the extra dimensions of the bulk
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space–time, codimension-two (or more) lightlike braneworlds per-
form in the ground state non-trivial motions in the extra dimen-
sions – planar circular, spiral winding etc depending on the topol-
ogy of the extra dimensions. For details we refer to [8,9].

In the present Letter we are going to study dynamics of LL-
branes both as test branes and material sources in the case of
Kerr–Newman black hole space–time, in particular – Reissner–
Nordström space–time as a limiting case of the former (cf. the
textbooks [11]). We find that the LL-brane automatically positions
itself on the Kerr–Newman horizon and in addition it rotates along
with the same angular velocity as the black hole. When moving as
a test brane in Kerr–Newman background we find exponential “in-
flation/deflation” of the dynamical LL-branes tension similar to the
spherically symmetric case.

Our next task is to construct a traversable wormhole solution of
Kerr–Newman type of the self-consistent Einstein–Maxwell system
interacting with a LL-brane, i.e., invoking the LL-brane as a mate-
rial source of the wormhole. It turns out that our construction
works only for the spherically symmetric limiting case of Reissner–
Nordström geometry. It is achieved by “surgically” eliminating
the space–time region inside the (outer) Reissner–Nordström hori-
zon and sewing together two copies of the exterior Reissner–
Nordström region along their common (outer) horizon through
the LL-brane’s energy–momentum tensor (derived from the perti-
nent LL-brane world-volume action). In other words, one achieves
a Reissner–Nordström traversable wormhole solution of Misner–
Wheeler type [12] which does not require electrically charged
sources.2

Let us particularly stress that our construction below is based
on a first principle’s approach, i.e., the “surgical” matching at the
Reissner–Nordström wormhole “throat” comes from a well-defined
world-volume Lagrangian description of LL-brane dynamics.

2. World-volume Lagrangian description of lightlike branes

In Refs. [8,9] we have proposed a systematic Lagrangian formu-
lation of a generalized Polyakov-type for LL-branes in terms of the
world-volume action:

SLL =
∫

dp+1σ Φ(ϕ)

[
−1

2
γ ab gab + L

(
F 2)], (1)

with the following notations. Here γab denotes the intrinsic Rie-
mannian metric on the world-volume, a,b = 0,1, . . . , p; (σ a) ≡
(τ ,σ i) with i = 1, . . . , p; gab is the induced metric:

gab ≡ ∂a Xμ∂b Xν Gμν(X), (2)

which becomes singular on-shell (manifestation of the lightlike na-
ture, cf. Eq. (8) below);

Φ(ϕ) ≡ 1

(p + 1)!εI1...I p+1ε
a1...ap+1∂a1ϕ

I1 · · · ∂ap+1ϕ
I p+1 (3)

is an alternative non-Riemannian reparametrization-covariant inte-
gration measure density replacing the standard

√−γ ≡√−det ‖γab‖ and built from auxiliary world-volume scalars

{ϕ I }p+1
I=1 ;

F 2 ≡ Fa1...ap Fb1...bp γ
a1b1 · · ·γ apbp ,

where:

Fa1...ap = p∂[a1 Aa2...ap ], F ∗a = 1

p!
εaa1...ap

√−γ
Fa1...ap (4)

2 Misner and Wheeler [12] discovered that wormholes connecting two asymptot-
ically flat spacetimes provide the possibility of “charge without charge”, i.e., electro-
magnetically non-trivial solutions where the lines of force of the electric field flow
from one universe to the other without a source and giving the impression of being
positively charged in one universe and negatively charged in the other universe.
are the field-strength and its dual one of an auxiliary world-
volume (p − 1)-rank antisymmetric tensor gauge field Aa1...ap−1

with Lagrangian L(F 2).
Equivalently one can rewrite (1) as:

SLL =
∫

dp+1σ χ
√−γ

[
−1

2
γ ab gab + L

(
F 2)], χ ≡ Φ(ϕ)√−γ

, (5)

where from we see that the composite field χ plays the role of a
dynamical (variable) brane tension.

Remark 1. For the special choice L(F 2) = (F 2)1/p the above action
becomes invariant under Weyl (conformal) symmetry:

γab −→ γ ′
ab = ργab, ϕ i −→ ϕ′ i = ϕ′ i(ϕ) (6)

with Jacobian det ‖ ∂ϕ′ i

∂ϕ j ‖ = ρ .

Now let us consider the equations of motion corresponding
to (1) w.r.t. ϕ I :

∂a

[
1

2
γ cd gcd − L

(
F 2)] = 0 −→ 1

2
γ cd gcd − L

(
F 2) = M, (7)

where M is an arbitrary integration constant. The equations of mo-
tion w.r.t. γ ab read:

1

2
gab − F 2L′(F 2)[γab − F ∗

a F ∗
b

F ∗2

]
= 0, (8)

where F ∗a is the dual field strength (4).
There are two important consequences of Eqs. (7), (8). First,

both of them taken together imply the constraint:

L
(

F 2) − pF 2L′(F 2) + M = 0,

i.e. F 2 = F 2(M) = const on-shell. (9)

Second, Eq. (8) exhibits on-shell singularity of the induced met-
ric (2):

gab F ∗b ≡ ∂a XμGμν

(
F ∗b∂b Xν

) = 0, (10)

i.e., the tangent vector to the world-volume F ∗a∂a Xμ is lightlike
w.r.t. metric of the embedding space–time.

Remark 2. Let us stress the importance of introducing the alterna-
tive non-Riemannian integration measure density in the form (3).
If we would have started with world-volume LL-brane action in the
form (5) where the tension χ is an elementary field (instead of be-
ing function of the measure-density scalars), then variation w.r.t.
χ would produce second Eq. (7) with M identically zero. This in
turn by virtue of the constraint (9) (with M = 0) would require the
Lagrangian L(F 2) to assume the special fractional function form
from Remark 1 above. This special case of Weyl-conformally in-
variant LL-branes has been discussed in our previous papers (first
two Refs. [8]).

Further, the equations of motion w.r.t. world-volume gauge field
Aa1...ap−1 (with χ as defined in (5) and accounting for the con-
straint (9)) read:

∂[a(F ∗
b]χ) = 0. (11)

They allow us to introduce the dual “gauge” potential u:

F ∗
a = const · 1

χ
∂au, (12)

enabling us to rewrite Eq. (8) (the lightlike constraint) in terms of
the dual potential u in the form:
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γab = 1

2a0
gab − 2

χ2
∂au∂bu, a0 ≡ F 2L′(F 2)∣∣

F 2=F 2(M)
= const (13)

(L′(F 2) denotes derivative of L(F 2) w.r.t. the argument F 2).
From (12) and (9) we obtain the relation:

χ2 = −2γ ab∂au∂bu, (14)

and the Bianchi identity ∇a F ∗a = 0 becomes:

∂a

(
1

χ

√−γ γ ab∂bu

)
= 0. (15)

Finally, the Xμ equations of motion produced by the (1) read:

∂a
(
χ

√−γ γ ab∂b Xμ
) + χ

√−γ γ ab∂a Xν∂b XλΓ
μ
νλ(X) = 0 (16)

where Γ
μ
νλ = 1

2 Gμκ(∂ν Gκλ + ∂λGκν − ∂κ Gνλ) is the Christoffel con-
nection for the external metric.

Now it is straightforward to prove that the system of equa-
tions (14)–(16) for (Xμ, u,χ), which are equivalent to the equa-
tions of motion (7)–(11), (16) resulting from the original Polyakov-
type LL-brane action (1), can be equivalently derived from the fol-
lowing dual Nambu–Goto-type world-volume action:

SNG = −
∫

dp+1σ T

√
−det

∥∥∥∥gab − 1

T 2
∂au∂bu

∥∥∥∥. (17)

Here gab is the induced metric (2), T is dynamical tension simply
related to the dynamical tension χ from the Polyakov-type formu-

lation (5) as T 2 = χ2

4a0
with a0 – same constant as in (13).

In what follows we will consider the initial Polyakov-type
form (1) of the LL-brane world-volume action. World-volume
reparametrization invariance allows to introduce the standard syn-
chronous gauge-fixing conditions:

γ 0i = 0 (i = 1, . . . , p), γ 00 = −1. (18)

Also, we will use a natural ansatz for the “electric” part of the
auxiliary world-volume gauge field-strength:

F ∗i = 0 (i = 1, . . . , p), i.e. F0i1...ip−1 = 0, (19)

meaning that we choose the lightlike direction in Eq. (10) to
coincide with the brane proper-time direction on the world-
volume (F ∗a∂a 	 ∂τ ). The Bianchi identity (∇a F ∗a = 0) together
with (18)–(19) and the definition for the dual field-strength in (4)
imply:

∂0γ
(p) = 0 where γ (p) ≡ det ‖γi j‖. (20)

Then LL-brane equations of motion acquire the form (recall defini-
tion of gab (2)):

g00 ≡ ẊμGμν Ẋν = 0, g0i = 0, gij − 2a0γi j = 0 (21)

(the latter are analogs of Virasoro constraints), where the M-
dependent constant a0 (the same as in (13)) must be strictly posi-
tive:

∂iχ = 0 (remnant of Eq. (11)), (22)

−
√

γ (p)∂0
(
χ∂0 Xμ

) + ∂i

(
χ

√
γ (p)γ i j∂ j Xμ

)
+ χ

√
γ (p)

(−∂0 Xν∂0 Xλ + γ kl∂k Xν∂l Xλ
)
Γ

μ
νλ = 0. (23)

3. Lightlike branes in Kerr–Newman black hole background

Let us consider (D = 4)-dimensional Kerr–Newman background
metric in the standard Boyer–Lindquist coordinates (see e.g. [11]):

ds2 = −A(dt)2 − 2E dt dϕ + Σ

Δ
(dr)2

+ Σ(dθ)2 + D sin2 θ (dϕ)2, (24)
A ≡ Δ − a2 sin2 θ

Σ
, E ≡ a sin2 θ(r2 + a2 − Δ)

Σ
,

D ≡ (r2 + a2)2 − Δa2 sin2 θ

Σ
, (25)

where Σ ≡ r2 + a2 cos2 θ , Δ ≡ r2 + a2 + e2 − 2mr. Let us recall
that the Kerr–Newman metric (24)–(25) reduces to the Reissner–
Nordström metric in the limiting case a = 0.

For the LL-brane embedding we will use the following ansatz:

X0 ≡ t = τ , r = r(τ ), θ = σ 1, ϕ = σ 2 + ϕ̃(τ ). (26)

In this case the LL-brane equations of motion (20)–(21) acquire the
form:

−A + Σ

Δ
ṙ2 + D sin2 θϕ̇2 − 2Eϕ̇ = 0,

−E + D sin2 θϕ̇ = 0,
d

dτ

(
DΣ sin2 θ

) = 0. (27)

Inserting the ansatz (26) into (27) the last Eq. (27) implies:

r(τ ) = r0 = const, (28)

whereas the second Eq. (27) yields:

Δ(r0) = 0, ω ≡ ϕ̇ = a

r2
0 + a2

. (29)

Eqs. (28)–(29) indicate that:

(i) The LL-brane automatically locates itself on the Kerr–Newman
horizon r = r0 – horizon “straddling” according to the termi-
nology of the first Ref. [4];

(ii) The LL-brane rotates along with the same angular velocity ω
as the Kerr–Newman horizon.

The first Eq. (27) implies that ṙ vanishes on-shell as:

ṙ 	 ± Δ(r)

r2
0 + a2

∣∣∣∣
r→r0

. (30)

We will also need the explicit form of the last Eq. (21) (using no-
tations (25)):

γi j = 1

2a0

(
Σ 0
0 D sin2 θ

)∣∣∣∣
r=r0, θ=σ 1

. (31)

Among the Xμ-equations of motion (23) only the X0-equation
yields additional information. Because of the embedding X0 = τ
it acquires the form of a time-evolution equation for the dynami-
cal brane tension χ :

∂τχ + χ
[
∂τ Xν∂τ Xλ − γ i j∂i Xν∂ j Xλ

]
Γ 0

νλ = 0, (32)

which, after taking into account (26), (28)–(29) and the explicit ex-
pressions for the Kerr–Newman Christoffel connection coefficients
(first Ref. [11]), reduces to:

∂τχ + χ2ṙ

[
Γ 0

0r + a

r2
0 + a2

Γ 0
rϕ

]
r=r0

= 0. (33)

Singularity on the horizon of the Christoffel coefficients (	 Δ−1)

appearing in (33) is cancelled by Δ in ṙ (30) so that finally we
obtain:

∂τχ ± χ
2(r0 − m)

r2
0 + a2

= 0, i.e. χ = χ0 exp

{
∓2

(r0 − m)

r2
0 + a2

τ

}
. (34)

Thus, we find “mass inflation/deflation” effect (according to the
terminology of [10]) on the Kerr–Newman horizon via the ex-
ponential time dependence of the dynamical LL-brane tension.
The latter is an analog of the previously found “mass infla-
tion/deflation” effect with LL-branes in spherically symmetric grav-
itational backgrounds [9].
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4. Bulk Einstein–Maxwell system interacting with a lightlike
brane and Misner–Wheeler traversable wormhole solution

Now we will consider a self-consistent D = 4 Einstein–Maxwell
system free of electrically charged matter, coupled to a LL-brane
where the LL-brane will serve as a gravitational source through its
energy–momentum tensor:

S =
∫

d4x
√−G

[
R(G)

16π
− 1

4
Fμν F μν

]
+ SLL. (35)

Here Fμν = ∂μAν − ∂ν Aμ and SLL is the same LL-brane world-
volume action as in (5). The pertinent Einstein–Maxwell equations
of motion read:

Rμν − 1

2
Gμν R = 8π

(
T (EM)
μν + T (brane)

μν

)
,

∂ν

(√−GGμκ GνλFκλ

) = 0, (36)

where T (EM)
μν = Fμκ FνλGκλ − Gμν

1
4 Fρκ FσλGρσ Gκλ , and the LL-

brane energy–momentum tensor is straightforwardly derived
from (5):

T (brane)
μν = −Gμκ Gνλ

∫
d3σ

δ(4)(x − X(σ ))√−G
χ

√−γ γ ab∂a Xκ∂b Xλ.

(37)

Following the standard procedure [13] we will now construct
a traversable wormhole solution to the Einstein–Maxwell equa-
tions (36) of Misner–Wheeler type [12] by making an essential use
of the explicit expression for the LL-brane energy–momentum ten-
sor (37). Namely, let us take two copies of Kerr–Newman exterior
space–time region, i.e., solutions to (36) with Gμν as in (24)–(25)
for r > r0, where r0 = m + √

m2 − a2 − e2 is the outer horizon ra-
dius, and let us try to sew the two regions together along the
horizon r = r0 via the LL-brane. To this end it is customary to in-
troduce a new radial-like coordinate η normal w.r.t. the LL-brane:

r = r0 + |η|, ∂r

∂η
= sign(η), η ∈ (−∞,+∞). (38)

Accordingly, the metric in the total space of the two copies of ex-
terior Kerr–Newman regions reads:

ds2 = − Ã(dt)2 − 2Ẽ dt dϕ + Σ̃

Δ̃
(dη)2

+ Σ̃(dθ)2 + D̃ sin2 θ (dϕ)2, (39)

where Ã ≡ A|r=r0+|η| with the same A as in (24)–(25), and sim-
ilarly for Ẽ , Σ̃ , Δ̃, D̃ . The two copies transform into each other
under the “parity” transformation η → −η.

Inserting in (37) the expressions for Xμ(σ ) from (26) and (28)–
(29), taking into account the explicit form of Kerr–Newman metric
coefficients (24)–(25), the gauge-fixing conditions for the intrinsic
world-volume metric (18) and Eq. (31) we get:

T μν
(brane)

= Sμνδ(η) (40)

with surface energy–momentum tensor:

Sμν ≡ − χ

2a0

r2
0 + a2

r2
0 + a2 cos2 θ

× [−∂τ Xμ∂τ Xν + γ i j∂i Xμ∂ j Xν
]

t=τ , θ=σ 1,ϕ=σ 2+ a
r2
0+a2 τ

, (41)

where now the indices μ,ν refer to (t, η, θ,ϕ) and a0 is the inte-
gration constant parameter appearing in the LL-brane dynamics (cf.
Eq. (13)). Let us also note that unlike the case of test LL-brane mov-
ing in a Kerr–Newman background (Eqs. (32)–(34)), the dynamical
tension χ in Eq. (41) is constant. This is due to the fact that in
the present context we have a discontinuity in the Kerr–Newman
Christoffel connection coefficients across the LL-brane sitting on
the horizon (η = 0). The latter problem in treating the geodesic LL-
brane equations of motion (16), in particular – Eq. (32), is resolved
following the approach in Ref. [3] (see also the regularization ap-
proach in Ref. [14], Appendix A) by taking the mean value of the
pertinent non-zero Christoffel coefficients across the discontinuity
at η = 0 and accounting for (38):

〈
Γ 0

0η

〉 ≡ 1

2

(
Γ 0

0η

∣∣
η→+0 + Γ 0

0η

∣∣
η→−0

) = 1

2

(
Γ 0

0r

∣∣
r→r0

− Γ 0
0r

∣∣
r→r0

) = 0,

(42)

and similarly for 〈Γ 0
ηϕ〉 = 0. Therefore, in the latter case Eq. (32) is

reduced to ∂τχ = 0.
From the Einstein equations (36), taking into account Eqs. (40)–

(41), one obtains in a standard way the discontinuity for the Kerr–
Newman Christoffel coefficients (analog of Israel junction condi-
tions [3,4]). Namely, observing that:

Rμν ≡ ∂ηΓ
η
μν + ∂μ∂ν ln

√−G + non-singular terms

= 8π

(
Sμν − 1

2
Gμν Sλ

λ

)
δ(η) + non-singular terms, (43)

we find that delta-function singularities are present on both sides
for (μν) = (ηη). For (μν) = (0η) and (μν) = (ηϕ) such singular-
ities appear only on the r.h.s., and the rest of (43) are singularity
free. Consistency of (43) for (μν) = (0η) and (μν) = (ηϕ), i.e.,
vanishing of the delta-function singularity on the r.h.s. requires
a = 0. In other words, consistent wormhole solution with LL-brane
as a “throat” may exist only for the limiting case of spherically
symmetric Reissner–Nordström geometry.

It remains to check Eq. (43) for (μν) = (ηη). In order to avoid
coordinate singularity on the horizon it is more convenient to con-
sider the mixed component version of the latter:

Rη
η = 8π

(
Sη
η − 1

2
Sλ

λ

)
δ(η) + non-singular terms. (44)

Evaluating the r.h.s. of (44) from (41) with (26) and (28)–(29) we
obtain:

∂η

((
r0 + |η|)2

∂η Ã
) = −16πr2

0χδ(η) + non-singular terms, (45)

where Ã = (1 − 2m
r + e2

r2 )r=r0+|η| is the Reissner–Nordström limit of

the metric coefficient Ã in (39). Therefore, the junction condition
becomes:

∂η Ã|η→+0 − ∂η Ã|η→−0 = −16πχ, (46)

which yields the following relation between the Reissner–Nord-
ström parameters and the dynamical LL-brane tension:

4πχr2
0 + r0 − m = 0, where r0 = m +

√
m2 − e2. (47)

Eq. (47) indicates that the dynamical brane tension must be
negative. Eq. (47) reduces to a cubic equation for the Reissner–
Nordström mass m as function of |χ |:(
16π |χ |m − 1

)(
m2 − e2) + 16π2χ2e4 = 0. (48)

In the special case of Schwarzschild wormhole (e2 = 0) the
Schwazrschild mass becomes:

m = 1

16π |χ | . (49)

Notice that, for large values of the LL-brane tension |χ |, m is very
small. In particular, m � MPl for |χ | > M3

Pl (MPl being the Planck
mass).
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5. Conclusions

In the present Letter we have constructed a traversable worm-
hole solution by sewing together two copies of exterior Reissner–
Nordström space–time regions at a Reissner–Nordström outer hori-
zon via a LL-brane with a negative dynamical tension. This LL-brane
provides a theoretically sound non-phenomenological gravitational
source for the Reissner–Nordström wormhole since its dynamics, in
particular its surface energy–momentum tensor, are derived from
a well-defined world-volume Lagrangian action (1). Furthermore,
let us stress that the LL-brane is electrically neutral and at the
same time the Reissner–Nordström wormhole appears to possess
two oppositely charged sources – one for each Reissner–Nordström
region beyond the common horizon.

According to Eq. (47) (in particular Eq. (49)) wormholes built
from LL-branes with very high negative tension have a small mass.
To this end it is interesting to note that one can obtain baby
universe solutions at very small energy cost by considering high
surface tensions too, which similarly require a wormhole, although
there the tension is positive (Refs. [15]). Notice however that in
Refs. [15] the solutions are time-dependent and suffer from a sin-
gular initial problem. In the present work there is no singularity –
the would-be singularities have been “surgically removed” by the
wormhole matching.

On the other hand, for small values of the LL-brane tension |χ |
Eq. (47) implies that the Reissner–Nordström geometry of the
wormhole must be near extremal (m2 	 e2).
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